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Outline
• Motivation: What can BaF2 do?
• Background: How does BaF2 do it?
• Focus: Time-of-flight positron emission tomography (TOF-PET)
• Prototype development: Design considerations
• Prototype development: Components and assembly
• Next Steps: Characterizing detector performance
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Introduction
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Motivation
• BaF2 one of the fastest known scintillators, emitting at 195 & 220 nm with sub-

nanosecond decay constant
• Fast emission only comprises ~13% of total light

− Most light is emitted at 310 nm, 600 ns decay constant
− Count rate permitting à fast component for timing, slow component for energy 

resolution
− High count rate à pile up

1983 [1]

1983 [1]1983 [1]
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Motivation

Timing applications
• High time resolution
• High count rate

Low energy physics
• Neutron capture cross 

section measurements
• Nuclear lifetime 

measurements

Medical imaging
• Time-of-flight positron 

emission tomography 
(TOF-PET)

• Hadron therapy range 
monitoring

Materials science
• Positron annihilation 

spectroscopy

High energy physics
• Calorimetry
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Motivation
• Ongoing BaF2 research largely focuses on material and/ or photodetector 

characterization à small, single crystals
• Different applications require different detection system geometries
• Some applications require slow component rejection

Goal: Develop a pixelated BaF2 test bed to characterize the 
performance of various configurations for timing applications.
• Focus: TOF-PET à design inspiration
• Deployable form factor
• Variable system geometry
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Background
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BaF2 scintillation mechanisms

• Slow component
− Self-trapped exciton (STE) luminescence
− Self-trapped hole: two adjacent F- ions share a 

hole, effectively forming F2
-

− A self-trapped hole captures an electron, 
forming a self-trapped exciton which 
subsequently decays 

• Fast component
− Core-valence (CV) luminescence
− An electron from the 5pBa2+ band is excited to 

the conduction band
− The hole left behind is quickly annihilated by an 

electron from the 2pF- band

1994 [2]

1993 [3]
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Suppression of the slow component

• Heating BaF2 activates thermal 
dissociation of STEs

1985 [4]
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Suppression of the slow component

• Doping BaF2 with rare earths 
preferentially quenches STE 
luminescence
− Inhibits STE formation
− Provides STE dissociation channels
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1989 [5]
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Suppression of the slow component

• Filtering BaF2 emission allows 
selective collection of the fast 
component

2015 [6]
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Suppression of the slow component

High count rate

Benefit Cost

Lower light output

Example: HEP colliders – High bunch crossing rate 
and intense product showers make slow component 
suppression ideal.
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An overview of TOF-PET
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Conventional PET – Principles
• Antiparticle pair: electrons and positrons annihilate one another, converting the 

rest mass of both particles into electromagnetic energy

• PET leverages these kinematics to localize a positron emitter
− Near-coincident detection of back-to-back gammas defines a line of response (LOR)
− Multiple LORs indicate source position via their intersection

• Conventional PET uses TOF only for event identification

e-

e+

Q = 1022 keV

E = 511 keV E = 511 keV
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TOF-PET – Principles 
• TOF can localize source position along each line of response

− The difference in time of arrival of annihilation quanta yields the distance from field of 
view (FOV) center to the source

• Ideally, enables direct source localization without image reconstruction
− Obviates the need for measurements at multiple detector angles
− Requires 1.5 mm resolution along the line of response à 10 ps FWHM coincident 

time resolution (CTR)

𝑡! 𝑡"

𝑥 =
𝑡! − 𝑡" % c

2
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TOF-PET – Principles 
• TOF Improves image signal-to-noise ratio (SNR)

Conventional PET

TOF-PET

Gaussian probability kernel
FWHM determined by coincidence time resolution (CTR)

2009 [7]
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TOF-PET – Materials
• Historically, BGO is the material of choice for conventional PET

− TOF-PET not possible
• LSO is considered the best scintillator overall for PET

− 300 ps CTR for two crystals à TOF-PET feasible

2021 [8]
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TOF-PET – Detector structure
• Block detector

− Tightly packed array of crystals, separated by reflective material
− Monolithic light guide
− Array of PMTs
− Interaction position reconstructed from light intensity ratios across PMT array

PMT
Scintillator

Scintillator

Scintillator

Scintillator

Scintillator

Scintillator

PMT

Light guide
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TOF-PET – Problems with BaF2
• Earliest TOF-PET systems utilized BaF2, but material property difficulties and 

the advent of BGO all but halted development
• Low density, low effective Z

− Poor efficiency

• Low light output
− Poor energy resolution (photopeak identification)
− Poor position reconstruction assuming standard block detector

• UV emission
− Light collection challenges
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Prototype development
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Design considerations

• Low density, low effective Z
− Larger pixels

• Low light output
− Read out each pixel individually

• UV emission
− Total internal reflection
− UV sensitive photodetector

Goal: Develop a pixelated BaF2 test bed to characterize the 
performance of various configurations for timing applications.
• Focus: TOF-PET à design inspiration
• Deployable form factor
• Variable system geometry

• High time resolution
− Total internal reflection
− Low transit time spread photodetector

• Modular
− Easily configurable experimental 

geometries
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Photonis Planacon

• 59 mm x 59 mm x 21 mm
• Sapphire window à Good UV transmission
• MCP gain stage

− 35 ps transit time spread

• 8x8 grid of anodes
− 5.9 mm square anodes, 6.5 mm pitch

• Two Samtec QRM8 connectors for signal 
transmission

• Potted HV divider (SHV to multi-pin LEMO)
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BaF2 array – Pure BaF2 pixels, 4.6 mm x 4.6 mm x 30 mm
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• Stack plates to form a 3D pixel frame
• Rounded corners on pixel slots 

enforce an air gap around each pixel
• Align pixels over anodes
• Laser-cut black acetal
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Slow component suppression
• Slow component suppression does not 

necessarily improve TOF-PET performance
• Instead, facilitates system characterization for 

high count rate applications
− Slow component suppression via heating isn’t 

practical for instrumentation
− Doping can also degrade fast component intensity
− Optical filtering is relatively easy to implement

• Interference filters can be manufactured to 
match pixel size, preserving optical 
segmentation

• Complication: filter transmission is angle-of-
incidence (AOI) dependent
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Filter optimization
• Choice of long wavelength cutoff must account for AOI distribution of collected light
• Simplified 2D light transport, AOI-dependent filter transmission, and QE calculations 

employed to optimize long wavelength cutoff for fast photoelectron production

𝜆! = 𝜆 1 −
𝑛"
𝑛#$$

sin 𝜃
%

Blue-shift of filter 
transmission with 
increasing AOI Planacon

sapphire 
window QE2020 [9] 2020 [9]



2611/18/21

Filter optimization
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227 nm filter

242 nm filter

Long wavelength 
cutoff

Number of fast 
photoelectrons (pe) [Fast pe] / [Total pe]

227nm 1.74 / MeVee 0.999

242nm 8.17 / MeVee 0.985

• Increasing the filter cutoff from 227 nm 
to 242 nm preserves more off-angle 
fast light, at the cost of slightly more 
slow component transmission

• Slow component suppression via 
doping would allow for an even higher 
cutoff

2020 [9]
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DAQ Electronics
• Timing: CAEN VX1290N-2eSST TDC

− 16 channels
− 25 ps resolution
− Timing signal can be picked off from the HV divider

§ Modify HV divider provided by Photonis (if possible)
§ Design custom HV divider

− A 10 ps resolution model coming soon…
• Spectroscopy: CAEN VX2740 digitizer

− 64 channels
− 125 MS/s à 8 ns samples
− 2 V full scale range, 16-bit
− Spectroscopy helps with event identification in 

TOF-PET

[10]
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Detector assembly
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BaF2 array construction
• ~60 plate stack forms pixel frame
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BaF2 array construction
• Air gap around each pixel enables total internal reflection

− The top of each pixel shows the color of the surface the array sits on
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Detector assembly

• Filtered BaF2 array sits at 
the end of an aluminum 
housing

Stack up (single pixel)

Filter

Crystal

Planacon

Diaphragm 
blocking unfiltered 

light
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Detector assembly

• Planacon is air-coupled to 
the array
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BaF2 array construction
• Four corner screws for mounting
• 4 detectors assembled!
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Next steps
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Simulations
• Toy Monte Carlo models are useful for system performance estimation and 

building intuition, but they are not sufficient
• GEANT4: G4Scintillation and G4OpticalPhoton

− One simulation spanning from radiation incident on a BaF2 crystal to digitized waveforms

• Validation via comparison to experimental data enables design optimization in 
simulation space
− Optimization parameters

§ Crystal dimensions
§ Crystal emission spectrum (i.e., doping)
§ Filter wavelength cutoff
§ Optical coupling
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Data acquisition software
• VX2740 digitizers represent a significant departure from previous CAEN 

product design
− Hardware: direct communication via USB/ ethernet rather than VME backplane
− Software: string-based register interface rather than hexadecimal

• This is an opportunity to build new DAQ control software from scratch, rather 
than making discontinuous modifications to existing code
− Must incorporate CAEN TDC, which isn’t supported by the current software

• Set up time signal pickoff from HV divider
− Requires either existing circuit modification or custom circuit design
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Experiments
• Filter characterization

− 1” x 1” cylindrical pure BaF2 crystal
− Simultaneous collection of filtered and unfiltered 

light leads to filtered photopeak identification
− Feasibility study for filtered spectroscopy

BaF2PMT PMT

Filter
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Experiments
• PET-like system performance

− Mounting hardware to secure 
detectors to ring stands

− 4 detectors have been constructed
− 22Na source localization

Detector

Ring stand

Mounting plate

Detector

Clamp

Mounting plate

Ring stand

Top view

Front view

Detectors

Ring stands

22Na source
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Final thoughts
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Questions?
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Toy Monte Carlo models
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Light transport
• N events with E energy deposited
• For each event

− Position sampled uniformly throughout crystal
− Number of photons sampled from Poisson distribution with mean E*TLY
− For each photon

§ Emission component sampled according to FLY/TLY
§ Emission time sampled from exponential distribution
§ Wavelength sampled from digitized spectrum
§ Direction sampled isotropically

− Photons moving the wrong way are thrown out
§ Time to hit crystal face in each direction computed from position and direction
§ Indices of refraction and critical angles computed from wavelength
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Light transport
• Based on times and TIR criteria, the following are calculated

− Collected (bool)
− TIR at collection face (bool)
− AOI on collection face
− Refracted AOI after escaping through collection face
− Transit time in crystal
− Collection time (emission time + transit time)
− Number of reflections
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Filter transmission
• For each photon

− Uncollected photons are thrown out
− Effective photon wavelength calculated from wavelength and RCAOI, according to 

transmission AOI dependence
− Photons with effective wavelength outside of digitized transmission range are thrown 

out
− Transmitted (bool) sampled according to probability at effective wavelength
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Quantum efficiency
• Runs off of either light transport or filter transmission output
• For each photon

− Uncollected/ untransmitted photons are thrown out
− Photons with wavelength outside of digitized QE range are thrown out
− Converted (bool) sampled according to probability at wavelength
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Schematics
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Signal cabling – QRM8 to JTAG
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Signal cabling – QRM8 to MCX
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Corner radius
• Filleted corners maintain an airgap around each pixel

r = x 2 ⟹ x =
r
2

a + x = r ⟹ a +
r
2
= r

⟹ a = r 1 −
1
2

• A slightly more complicated equation 
accounts for machining tolerance

• Air gap: 0.05mm
• Corner radius: 0.11mm
• Pixel size: 4.6mm
• Hole width: 4.7mm
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BaF2 array structural components – pixel plates

• Stack up to form a 3D pixel 
frame

• Rounded corners on pixel 
slots enforce an air gap 
around each pixel

• Align pixels over anodes
• Laser-cut black acetal

− Nonconductive material 
avoids potential interference 
with electron optics
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BaF2 array structural components – filter plates
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• Align filters under pixels
• Laser-cut black acetal

− Nonconductive material 
avoids potential interference 
with electron optics
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BaF2 array structural components – spacer plates
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• Diaphragm blocking 
unfiltered light to account 
for pixel-filter size 
mismatch

• Laser-cut black acetal
− Nonconductive material 

avoids potential interference 
with electron optics
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SECTION A-A

A

B

Top

Tapped holes for #4-40 socket head cap screws.1
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DO NOT SCALE DRAWING REVISION

TITLE:
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SCALE:1:1 SHEET 1 OF 1
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XX-XX-XX-XXXXX

MC8

8-MODULE CAP

A
DRAWN BY:

T. A. JORDAN

Detector housing – cap

• Contains the pixel-filter-
Planacon stack-up

• Wall thickness set such 
that two adjacent detectors 
will have 3 columns of 
“dead pixels” between 
them

• Aluminum
− Low Z material for minimal 

gamma attenuation
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BACK PLATE
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Detector housing – back plate

• Ports for signal and HV 
cables

• 4 mounting holes
− #10-32 screws

• Aluminum
− Low Z material for minimal 

gamma attenuation
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Principles of radiation detection
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What is a radiation detector?

• A transducer that converts radiation 
into electric current
− The output current encodes information 

about radiation interactions within the 
detector

• An analogy: cryptography
− Goal: to translate information’s syntax 

while preserving its substance
− Physics handles the encryption
− We are responsible for decryption, so 

we must understand the physics

By Hubert Berberich (HubiB) - Own work, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=25964875
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Two stages of general detector response
1. Excitation: a free, energetic charged particle interacts Coulombically with the 

electrons in the detector active volume
− Direct, e.g., a decay alpha in a gas detector
− Indirect, e.g., a photoelectron in a semiconductor detector

2. Collection: the intervening process(es) between excitation and the final output 
current

− Intrinsic, e.g., scintillation
− Extrinsic, e.g., pulse shaping

Active volume

Excitation Collection

Incident radiation Electronics

Direct

Indirect
Intrinsic Extrinsic
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Two stages of general detector response – timing
• Extrinsic collection processes can be optimized for timing

− Ex: high time resolution photodetectors in a scintillation detector
• Excitation time and intrinsic collection time are determined by detector material 

properties
− Ex: stopping power, electron/ hole mobilities (semiconductors), fluorescence decay 

time (scintillators)
− Define the fundamental limits of detector performance

• New material properties à new detectors

Active volume

Excitation Collection

Incident radiation Electronics

Direct

Indirect
Intrinsic Extrinsic
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Two stages of general detector response – timing
• Extrinsic collection processes can be optimized for timing

− Ex: high time resolution photodetectors in a scintillation detector
• Excitation time and intrinsic collection time are determined by detector material 

properties
− Ex: stopping power, electron/ hole mobilities (semiconductors), fluorescence decay 

time (scintillators)
− Define the fundamental limits of detector performance

• New material properties à new detectors

The discovery of the BaF2 fast scintillation component 
prompted a wave of BaF2 R&D

Active volume

Excitation Collection

Incident radiation Electronics

Direct

Indirect
Intrinsic Extrinsic
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BaF2 Timeline
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A brief history of BaF2 R&D

• BaF2 was originally investigated for 
vacuum ultraviolet optical elements
− Non-hygroscopic
− Very slightly water soluble

• 1971: Farukhi et al. observe scintillation under 
ionizing irradiation
– Emission peaked at 325 nm
– 630 ns decay time constant
– Scintillation mechanism not well understood, 

attributed to modification of hole centers

1956 [11]

1971 [12]
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A brief history of BaF2 R&D
• 1971-1982: very little progress, still mostly focused on UV transmission
• 1982: Ershov et al. and Laval et al. independently observe the fast scintillation 

component
− Laval et al. propose TOF-PET  as a potential application

1983 [1] 1983 [1]
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A brief history of BaF2 R&D
• 1971-1982: very little progress, still mostly focused on UV transmission
• 1982: Ershov et al. and Laval et al. independently observe the fast scintillation 

component
− Laval et al. propose TOF-PET  as a potential application

1982 onwards:
• Scintillation mechanism characterization
• Slow component suppression
• Application-specific development

1983 [1] 1983 [1]
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BaF2 in the 21st century

• Medical imaging
• High energy physics
• Low energy physics
• Materials science

Other applications
• Oil well logging
• Thermal neutron detection
• Double beta decay detection
• Dark matter detection

Doping
• La, Y, Lu, Sc
• Tm, Ce, Nd

BaF2-based materials
• Nanoparticles
• Ceramics
• Composites

Photodetectors
• Solar-blind PMTs
• VUV SiPMs

Scintillation 
characterization
• Discovery of “very fast” 

emission below 240 nm 
with 100 ps decay time


